cast iron, an alloy of iron that contains 2 to 4 percent carbon, along with varying amounts of silicon and manganese and traces of impurities such as sulfur and phosphorus. It is made by reducing iron ore in a blast furnace. The liquid iron is cast, or poured and hardened, into crude ingots called pigs, and the pigs are subsequently remelted along with scrap and alloying elements in cupola furnaces and recast into molds for producing a variety of products.
The Chinese produced cast iron as early as the 6th century BC, and it was produced sporadically in Europe by the 14th century. It was introduced into England about 1500; the first ironworks in America were established on the James River, Virginia, in 1619. During the 18th and 19th centuries, cast iron was a cheaper engineering material than wrought iron because it did not require intensive refining and working with hammers, but it was more brittle and inferior in tensile strength. Nevertheless, its load-bearing strength made it the first important structural metal, and it was used in some of the earliest skyscrapers. In the 20th century, steel replaced cast iron in construction, but cast iron continues to have many industrial applications.
Most cast iron is either so-called gray iron or white iron, the colours shown by fracture. Gray iron contains more silicon and is less hard and more machinable than is white iron. Both are brittle, but a malleable cast iron produced by a prolonged heat treatment was developed in France in the 18th century, and a cast iron that is ductile as cast was invented in the United States and Britain in 1948. Such ductile irons now constitute a major family of metals that are widely used for gears, dies, automobile crankshafts, and many other machine parts.
The presence of iron in everyday life began in about 1200 BCE, encompassing a wide range of uses from farming implements to weapons of war. Blacksmiths became a critical profession, working with iron to change its properties and shape the material into tools. Every village and town would have a blacksmith’s shop, where sickles, plowshares, nails, swords, candlestick holders, and more were produced.
The discovery of iron’s value led to what has become known as the Iron Age, due to the dominance of this material in social and military applications. Another milestone for metals would follow—the Industrial Revolution changed the way metals were produced and worked into products, including iron.
Types of iron
There are two major types of iron produced: wrought iron and cast iron. Within those, cast iron includes its own family of metals.
Wrought iron
The first type of iron produced and worked by blacksmiths was wrought iron. It is virtually pure elemental iron (Fe) that is heated in a furnace before being wrought (worked) with hammers on an anvil. Hammering iron expels most of the slag from the material and welds the iron particles together.
During the industrial revolution and the associated acceleration of construction activities, a new use for wrought iron was discovered. Its high tensile strength (resistance to breaking when under tension) made it ideal to use for beams in large construction projects such as bridges and high-rise buildings. However, the use of wrought iron for this purpose was largely abandoned in the early 20th century when steel products were developed with superior performance to iron for construction applications.
Wrought iron has become famous for decorative pieces. Churches of the 15th and 16th century contain fine wrought iron pieces produced by skilled artisans. In the modern world, railings, doors, and benches are still made from wrought iron as custom pieces.
Cast iron
Cast iron is produced by smelting iron-carbon alloys that have a carbon content greater than 2%. After smelting, the metal is poured into a mold. The primary difference in production between wrought iron and cast iron is that cast iron is not worked with hammers and tools. There are also differences in composition—cast iron contains 2–4% carbon and other alloys, and 1–3% of silicon, which improves the casting performance of the molten metal. Small amounts of manganese and some impurities like sulfur and phosphorous may also be present. Differences between wrought iron and cast iron can also be found in the details of chemical structure and physical properties.
Although both steel and cast iron contain traces of carbon and appear similar, there are significant differences between the two metals. Steel contains less than 2% carbon, which enables the final product to solidify in a single microcrystalline structure. The higher carbon content of cast iron means that it solidifies as a heterogeneous alloy, and therefore has more than one microcrystalline structure present in the material.
It is the combination of high carbon content, and the presence of silicon, that gives cast iron its excellent castability. Various types of cast irons are produced using different heat treatment and